
Modeling the ASCB-D Synchronization

Algorithm with SPIN: A Case Study

Nicholas Weininger and Darren Cofer

Honeywell Technology Center, Minneapolis MN 55418, USA

fnicholas.weininger,darren.coferg@honeywell.com

Abstract. In this paper, we describe our application of SPIN [1] to

model an algorithm used to synchronize the clocks of modules that pro-

vide periodic real-time communication over a network. We used the SPIN

model to check certain performance properties of the system; in partic-

ular, we were able to verify that the algorithm achieves synchronization

within a time bound, even in the presence of certain types of faults. Our

results suggest that state space explosion in models of time-dependent

systems can be most e�ectively managed by explicit modeling of time;

by imposing determinism on execution orderings, and justifying that de-

terminism in a domain-speci�c manner; and by splitting up the space of

execution sequences according to initial conditions.

1 Introduction

In this paper, we describe our construction of a formal model of the ASCB-D

synchronization algorithm using the SPIN model checker. ASCB-D (Avionics

Standard Communications Bus, rev. D) is a bus structure designed for real-

time, fault-tolerant periodic communications between Honeywell avionics mod-

ules. The algorithm we modeled is used to synchronize the clocks of commu-

nicating modules to allow periodic transmission. The ASCB-D synchronization

algorithm is a particularly good test case for formal methods, for several reasons:

{ The algorithm is a good example of a time-dependent, event-driven system.

Many safety-critical embedded software systems, particularly real-time sys-

tems, are of this type, and so modeling techniques learned in this e�ort are

likely to have wide application.
{ The algorithm is su�ciently complex to test the limits of currently available

modeling tools. It demands an intelligent and e�cient modeling approach;

due to the essentially in�nite number of timing sequences possible in the

system, a naive model would surely be intractable.
{ The central performance properties which the algorithm is intended to ful�ll

are time bounds. For example, the speci�cation states that synchronization

must be achieved within 200 milliseconds of initial node startup. It is no-

toriously di�cult to verify that such bounds hold over all possible startup

conditions. Furthermore, these bounds must be shown to hold in the pres-

ence of numerous hardware faults, some of which are di�cult to simulate on

actual test hardware.



SPIN, in turn, proved to be a particularly good tool for modeling such an

algorithm; it allowed us not only to verify timing invariants over the state space

of the model, but also to conduct random or guided simulations that shed light

on the possible behaviors of the model. The graphical representation of these

simulations made debugging the model, and eliciting the causes of invariant

violations, much easier. Furthermore, the Promela modeling language allowed

us to produce an easy-to-understand model that we later found corresponded

remarkably well to the C++ implementation code.

Since the ASCB-D synchronization algorithm contains numerous explicit

time constraints, one might reasonably ask why we did not choose a model-

checking tool that has time-related primitives as part of its language. We did

evaluate one such tool, Kronos [2]. In Kronos, a continuously running clock can

be associated with each state in the model, and transition conditions between

states can include predicates on clock values. However, Kronos's modeling lan-

guage, based on an explicit representation of states, made for a much less intu-

itively obvious representation of the algorithm than we obtained with Promela.

The high level of algorithmic complexity, in our judgment, made ease of under-

standing of the representation an overriding consideration.

Despite that complexity, we were able to integrate almost all of the algo-

rithm's features into the model while keeping the state space small enough to

allow exhaustive veri�cation of timing properties. We achieved this, �rst, by min-

imizing the number of execution orderings possible in the model, and second, by

splitting the space of initial conditions and faults into subspaces.

Although the �rst versions of our model avoided introducing any explicit

representation of time, due to our belief that such representation would add un-

necessary state to the system model, we found eventually that an explicit time

representation was essential to controlling execution orderings. As we incorpo-

rated new features into the model, we learned more about the e�ects of di�erent

kinds of nondeterminism on the state space, and were able to gain steadily deeper

insights into the behavior of the real system. Indeed, perhaps the most impor-

tant general lesson we learned was that an iterative, top-down modeling process

is crucial to managing model complexity and maximizing understanding of the

system being modeled.

The following sections motivate, describe, and examine the results of the

modeling e�ort. Section 2 describes the algorithm we modeled; terminology from

this section is used throughout the rest of the paper. Section 3 gives a history of

the model's implementation, from simple original versions to the �nal version,

describing in detail the major structural changes we made along the way. Section

4 discusses the lessons we learned.

Our approach built on our experience with real-time operating system mod-

eling using SPIN [3]. Although SPIN and other model-checking tools have been

used to analyze real-time, safety-critical systems [4] [5] [6], we have found few

cases in which model checking has been used to verify as complex a real-world

system as the synchronization algorithm.



2 Algorithm Overview

The ASCB-D synchronization algorithm is run by each of a number of NICs

(Network Interface Cards) which communicate via a series of buses. These NICs

are split into two sides, corresponding to the pilot and co-pilot sides of an aircraft.

For each side there are two buses, a primary and a backup bus. Each NIC can

listen to, and transmit messages on, both of the buses on its own side. It can

also listen to, but not transmit on, the primary bus on the other side. From the

viewpoint of a given NIC, other NICs on the same side are called onside NICs;

NICs on the other side are xside NICs. Likewise, the buses on the NIC's own

side and on the other side are onside and xside buses respectively. The basic

structure of buses and NICs is diagrammed in Figure 1.

Left side Right side

NIC L1

NIC L2

NIC L3

NIC R1

NIC R2

NIC R3

PrimaryBackup BackupPrimary

... ...

Fig. 1. Structure of the ASCB-D buses.

The operating system running on the NICs produces frame ticks every 12.5

msec which trigger threads to run. In order for periodic communication to oper-

ate, all NICs' frame ticks must be synchronized within a certain tolerance. The

purpose of the synchronization algorithm is to enable that synchronization to

occur and to be maintained, within certain performance bounds, over a wide

range of faulty and non-faulty system conditions.

The synchronization algorithm works by transmitting special timing mes-

sages between the NICs. Upon initial startup, these messages are used to desig-



nate the clock of one NIC as a \reference" to which the other NICs synchronize;

after synchronization is achieved, the messages are used to maintain synchroniza-

tion by correcting for the NICs' clock drift relative to each other. The algorithm

is required to achieve synchronization within 200 msec of initial startup. It must

do this regardless of the order in which the NICs start or the time elapsed be-

tween their initial startup.

The synchronization algorithm must also meet the 200 msec deadline in the

presence of malfunctions in certain NICs or buses. For example, any one of

the NICs might be unable to transmit on, or unable to listen to, one or more

of the buses; or it might babble on one of the buses, sending gibberish which

prevents other messages from being transmitted; or one of the buses might fail

completely at startup, then function again for some period of time, then fail

again, then function again, and so on.

3 Implementing the model

Our implementation of the ASCB-D synchronization algorithm in a SPIN model

aimed to begin by modeling the smallest possible nontrivial subset of the spec-

i�ed algorithm, and increase the complexity of the model in stages from there.

We therefore began by limiting the scope of the model to the initial \synchro-

nization establishment" phase of the algorithm, omitting the logic dealing with

maintaining synchronization after it has been achieved. We initially modeled

only two NICs, one on each side. Also, we decided to abstract away from the de-

tails of message transmission on the bus, and in general to make the assumption

that both transmitting messages and executing code take zero time.

We also initially decided to abstract away from the numerical time calcu-

lations used by the algorithm, and to model only the ordering constraints it

imposes. This decision was based on a strong initial aversion to the idea of an

explicit model of time. Since the state space of a model must be �nite, elapsed

time has to be measured in discrete units of some �xed granularity; no matter

what granularity is chosen, this strategy is prone to errors caused by lumping

two di�erent execution orderings together into the same time unit. Furthermore,

since time counters can typically take on a very large number of di�erent values,

use of time counters can greatly increase the model state space size. The explicit

modeling of time eventually turned out to be unavoidable, and we were forced

to �nd ways around its limitations.

3.1 Simplifying observations

Beyond our initial restrictive assumptions, we can make two observations about

the structure of the ASCB-D algorithm which limit the space of execution or-

derings which we must consider.

First, from a single NIC's standpoint, the algorithm can be viewed as a

process driven by the frame tick event. Each time the NIC receives a frame tick,

it executes some code and then waits for the next tick. Furthermore, the code



executed after a frame tick operates entirely on input data that were collected

before the frame tick.

This means that if any two NICs, NIC 1 and NIC 2, are executing at the

same time, the execution sequence of NIC 1 cannot depend on anything that

NIC 2 does while NIC 1 is executing. Therefore we can construct the model

such that iterations of the algorithm on di�erent NICs are atomic with respect

to each other. This greatly reduces the size of the state space by eliminating

interleavings between di�erent NICs' execution.

Second, the frame ticks of di�erent NICs are related in their periodicity. It is

not possible for NIC 1 to go through an arbitrarily large number of frame ticks

while NIC 2 gets none, so execution sequences in which this happens should be

excluded from the model. In fact, under most circumstances, NIC 1 can only

have one frame tick for each tick of NIC 2, and vice versa.

The key phrase here, however, is \under most circumstances." Because frames

on di�erent NICs can be of di�erent lengths during the initial establishment of

synchronization, there are legitimate execution orderings in which NIC 1 gets two

ticks to NIC 2's one. The need to include these orderings in the model, without

including unrealistic n-to-1 orderings, was the key factor that eventually drove

us to implement an explicit numerical representation of time.

3.2 Structure of the two-NIC model

In our �rst and simplest model, the two NIC processes wait for ticks provided

by a \time" process; these ticks are communicated through blocking, or ren-

dezvous, channels. When a NIC receives a frame tick event, it queries a bu�er

process which gives it the contents of the timing messages received in the pre-

vious frame. The NIC executes the algorithm logic appropriately, based on the

messages received from the bu�er process. It then tells the bu�er process, again

using a rendezvous channel, what (if any) timing message to send in the coming

frame. The communications occurring among the processes are diagrammed in

Figure 2.

The NIC processes' code is enclosed in atomic statements specifying that

they are not to be interleaved with each other. Because the bu�er processes are

distinct from the NIC processes, however, their message transmissions may be

interleaved with NIC executions. We separated bu�ers from NICs in order to

model execution orderings in which messages are sent after a frame tick, and to

prevent deadlocks which could occur if each NIC process waited for the other to

send a message.

However, in the two-NIC model, the separate bu�er processes did not solve

the deadlock problem, but only pushed it one step further out. The deadlock

sequence instead became one in which NIC 1 was waiting to send to Bu�er 1,

which was waiting to send to Bu�er 2, which was waiting to send to Bu�er 1

(and likewise NIC 2 was waiting to send to Bu�er 2). Also, introducing separate

bu�ers led to too many spurious execution orderings in which a message was

sent to a bu�er at the frame tick, but then not sent on to the other NIC until

after that NIC had undergone several frame ticks.



Time

NIC 0 NIC 1

Buffer 0 Buffer 1
messages

Fig. 2. Processes in the �rst two-NIC version of our model.

A solution to this problem is to have NICs modify global data structures in

order to send messages, rather than making them communicate with separate

bu�er processes. This approach eliminates deadlocks, since there is no inter-

process synchronization mechanism required. However, it tends to expand the

state space, since global data structures are less susceptible to SPIN's compres-

sion algorithms.

Despite these limitations, the two-NIC model is useful. The logic modeled is

very far from the complexity of the real algorithm, but it nevertheless encodes

the basic strategy. The model is also su�cient to encode and verify a key system

invariant: that no matter what order the two NICs start up in, they always

eventually get in sync. In this model, that invariant can easily be encoded as

an LTL property and exhaustively veri�ed. By introducing a counter that is

incremented each tick after both NICs have started up, we can also bound the

time required for both NICs to get in sync.

An LTL veri�cation, with global data structures instead of bu�ers, that the

NICs are both in sync within 12 frames of starting completes in about 15 seconds

and visits 150409 states, reaching a search depth of 31741. (All timing �gures

are for a 300 Mhz UltraSparc II with 1024 MB of RAM). This result led us to

predict that modi�cations would be needed to keep the state space size tractable

with a more complex four-NIC model.

3.3 Expanding the model to four NICs

Our initial four-NIC model incorporated the following changes:



{ We extended the time process straightforwardly to provide ticks to four

NICs. Each time that the time process \ticked," it would allow for one frame

tick for each NIC; however, it did not restrict the order of the frame ticks

corresponding to its tick. This created problems, as we discuss below.
{ SPIN veri�es LTL properties by generating veri�er processes which run con-

currently with the model's processes. This increases the state space size

considerably. We replaced the LTL property by a simple assertion within

the time process:

assert(frames_since_started < 9 || (in_sync[0] && in_sync[1]

&& in_sync[2] && in_sync[3]));

This assertion is considerably easier for SPIN to verify. It is checked only

once per frame tick, but since the variables tested only change once per frame

tick, this is su�cient.
{ We reintroduced bu�er processes, but with a separation of onside and xside

buses. Since each NIC sends messages only on its onside bus, but listens to

both onside and xside buses, this prevents the bu�er processes from dead-

locking. We also introduced logic in the algorithm that di�erentiates between

onside and xside timing messages.

Our changes produced a stubbornly intractable model. Even after making

further simpli�cations (e.g. disallowing all those execution sequences where one

NIC started up two or more frames before the others), we estimated (by running

supertrace veri�cations) that the state space size was in the tens of millions,

and the search depth exceeded 500000. This goes far beyond the capacity of the

hardware available to us.

Furthermore, our initial four-NIC model clearly included execution sequences

not possible in the real system, because of the fact that the time process did not

control the ordering of the NIC ticks corresponding to its tick. For example, if

we number the NICs 0 through 3, we can see that the time process would allow

ticks and thus message transmissions to occur in a 3-2-1-0-0-1-2-3-3-2-1-0-0-1-2-3

sequence, which is not possible in the real algorithm. However, imposing a �xed

order on NIC ticks goes to the opposite extreme, excluding many orderings which

the real algorithm does allow. For instance, if a NIC extends its frame length

to \sync up" with the others, there could be two frame ticks from another NIC

arriving within that NIC's frame.

3.4 The time/environment process

The problems in the four-NIC model clearly necessitated major changes to the

basic model structure. The introduction of an explicit numerical time model, and

the combination of that time-modeling capability and the message-transmission

capability in the same \environment" process, turned out to be the changes we

needed to make the model tractable again.



For our �rst time model, we chose a granularity of 0.5 msec. This allowed

us to capture many of delay times in the algorithm, and to represent most

time quantities of interest (e.g. the length of frames) within an unsigned byte,

minimizing the total number of bytes that must be added to the state space.

We later reduced the time granularity to 1 �sec in order to capture more of the

delay times precisely; the su�ciency of a 1 �sec granularity is justi�ed in Section

3.8.

The time/environment process keeps track of the time remaining until the

next frame tick of each NIC and the messages received by each NIC in the current

frame, as well as the total time elapsed since \time zero." It then sits in a loop

executing the following algorithm:

while(forever)

{

pick id such that timeToNextTick[id] is minimal;

send NIC[id] the contents of its message buffers from

the last frame;

wait for NIC[id] to send back the length of its next frame,

plus the contents of the message it wants to send;

if that message is not empty, send it to the other

NICs' buffers;

add timeToNextTick[id] to timeToNextTick[i] for all i != id;

add timeToNextTick[id] to total_elapsed_time;

set timeToNextTick[id] to the length of the next frame

for NIC[id];

}

Observe that the above algorithm transfers the responsibility for determining the

length of the next frame to the NIC, allowing the introduction of NIC-speci�c

algorithm logic for determining this length. Also, it encapsulates message trans-

missions in the time process, eliminating the need for separate bu�er processes.

Since the time process is now dispatching the NICs one by one, there is now no

fear of message transmission deadlocks.



The NIC process can then sit in the following loop:

while(forever)

{

wait for the time process to send the contents of the

message buffers from last frame;

process the message buffers appropriately depending

on the NIC's current state;

compute the length of the next frame and the contents

of the timing message to send (if any);

send these data to the time process;

}

The communication structure between NIC and environment processes is dia-

grammed in Figure 3.

NIC 0

NIC 1

NIC 2

NIC 3

Time/Environment

= message buffers, frame ticks

= next tick duration, messages,
message transmission delays

Fig. 3. Communication between four NICs and the environment process.



3.5 Consequences of the time/environment process

A number of fundamental changes in the model follow immediately from this

introduction of numerical time. These include:

{ The environment process neatly encapsulates all those parts of the system

that provide input to the algorithm we wish to model (frame ticks, bu�ers,

and buses), while the NIC process encapsulates that algorithm completely.

The interface between the two is simple and localized. As we shall see later,

this is perhaps the most powerful advantage of the time/environment model;

it allows faults to be injected and complicated hardware interactions to be

added with no change required to the NIC code.

{ Because the environment process now dispatches ticks one by one, NICs

are trivially guaranteed to execute atomically with respect to each other.

NICs also execute atomically with respect to the environment process. This

simpli�es the space of possible execution orderings dramatically; the only

order that matters is the order in which ticks and message transmissions

occur.

{ Complicated tick orderings produced by frames of di�erent lengths are now

explicitly and accurately represented in the model.

{ We can now easily test for timing-dependent system properties. For instance,

we can place an assertion in the environment process, checked before each

tick, that states that all NICs should be in sync within 200 msec of the

startup time:

assert((total_time_elapsed < 400) ||

(in_sync[0] && in_sync[1] && in_sync[2] && in_sync[3]));

{ Because the interface between environment and NIC includes all the data

that must be shared between them, there is no need for global data struc-

tures. This allows SPIN's compression techniques to reduce the memory

required to store each state.

The reduction in state space produced by eliminating extraneous bu�er pro-

cesses and impossible interleavings far exceeds the increase produced by having

time counter values. However, we still face the problem that letting total time

elapsed go o� to in�nity can expand state space unnecessarily. To solve this

problem, we observe that the timing invariants we want to verify in the system

provide a natural bound on the maximum \interesting" time value. If we require

that all NICs get into sync within 200 msec, then there is no reason to continue

searching the state space after 200 + � msec has gone by. Therefore we can put

a test in the time process that, when a certain time threshold is passed, places

the system in an \acceptance" or valid end state.

Two major issues remain. First, in the above loop description, we stated that

the environment process should \choose id such that timeToNextTick[id] is



minimal." We did not specify how to choose between two NICs whose ticks are

scheduled at the same time: should we make a nondeterministic choice, or put

them in some predetermined order? The former will greatly expand the state

space; the latter runs the risk of excluding important execution orderings. In

our initial model, we opted to choose nondeterministically; further expansion of

the model eventually forced us to change to deterministic choice, and to justify

that change.

Second, initial startup orderings can now be speci�ed by giving initial times

(i.e. times to �rst tick) for each NIC. This is an important new capability, be-

cause we can now ask \what if the NICs started at just these times, and ran

from there?" However, it also means that much of the nondeterminism from the

original model has now been transferred into the choice of initial starting times.

E�ectively, we have split the state space of all possible execution sequences into

many small slices, one for each possible set of initial conditions. This makes ver-

i�cation runs tractable, but it also forces us to be careful about what we deduce

from an exhaustive veri�cation: before we conclude that a timing property al-

ways holds in the system, we must verify it for a su�ciently representative set

of initial conditions.

We can, of course, introduce nondeterministic choice of initial conditions into

the model. Both the initial startup times and the order in which the NICs are

assigned to those times can be chosen \randomly." However, choosing randomly

over even a small range of possible times quickly expands the state space beyond

tractability. One version of our four-NIC model, for example, can verify our 200

msec time-to-sync bound for a �xed set of startup times in about six minutes,

storing 3.05 million states and reaching a search depth of 2113. Here we use

nondeterministic NIC ordering for that set of startup times, so we are verifying

over 24 sets of initial conditions. If we also chose the startup time for each NIC

randomly from among a set of �ve values, we'd have 625 * 24 sets of initial

conditions over which to verify; this would likely produce a state space far too

large for a single veri�cation run.

3.6 Adding delayed message transmission

Once we model time explicitly, we can introduce into the model the variable

delays that occur between frame ticks and timing message transmissions. Since

we are modeling the hardware abstractly with the environment process, the ap-

proach is simple: let the NIC process send the message delay to the environment

process, and have the environment process schedule the message transmission as

an event at the appropriate time.

This requires that we add four new events to the list from which the en-

vironment must select the \soonest," since each NIC might transmit a timing

message each frame. If nondeterministic choices are allowed, this will increase

the state space size considerably. We therefore specify that message transmis-

sions always occur after frame ticks. This requires some justi�cation to ensure

that real execution orderings are not eliminated from the model; see our more

general argument in Section 3.8.



3.7 Adding multiple buses and bus fault injection

Once we've made the uni�ed environment process into a single entity distinct

from the NIC processes, it is easy to implement a model of the multiple buses

(primary and backup on each side) that exist in the ASCB-D system. The actual

transmission logic is handled entirely within the environment process. Modeling

multiple buses also provides an opportunity to start injecting bus faults into the

model. Each NIC might be deaf (unable to receive messages) with respect to

the onside primary bus, the onside backup bus, and/or the xside primary bus;

it might also be mute (unable to send messages) on either onside bus.

An example of the relevant logic is shown below. Here what we are seeing

is the code that sends a message from one timing NIC to the other timing NIC

on the same side. The sending NIC transmits the message on both primary and

backup buses; the receiving NIC listens to only one of those buses at a time. In

order for the receiving NIC to get the message successfully, the following must

be true for one of the buses, either primary or backup:

1. The receiving NIC must be listening to that bus.

2. The receiving NIC must not be deaf to that bus.
3. The sending NIC must not be mute to that bus.

If these conditions are satis�ed for one of the buses, the message is placed

in the receiving NIC's �rst onside bu�er, and the receiving NIC's second onside

bu�er is �lled with the former contents of its �rst onside bu�er.

if

::(listening_primary[(enabled_id + 1) % MAX_NICS] &&

!onside_primary_deaf[(enabled_id + 1) % MAX_NICS] &&

!primary_mute[enabled_id]) ||

(!listening_primary[(enabled_id + 1) % MAX_NICS] &&

!onside_backup_deaf[(enabled_id + 1) % MAX_NICS] &&

!backup_mute[enabled_id]) ->

d_step {

buffers[(enabled_id + 1) % MAX_NICS].onside_1 =

buffers[(enabled_id + 1) % MAX_NICS].onside_0;

buffers[(enabled_id + 1) % MAX_NICS].onside_timestamp[1] =

buffers[(enabled_id + 1) % MAX_NICS].onside_timestamp[0];

buffers[(enabled_id + 1) % MAX_NICS].onside_0 =

last_message[enabled_id];

buffers[(enabled_id + 1) % MAX_NICS].onside_timestamp[0] =

timeToNextTick[(enabled_id + 1) % MAX_NICS];

}

::else ->

fi;



Now that we have the ability to specify fault conditions, there are several

ways to inject faults. The simplest way is to set some combination of fault

attributes true at the beginning of the environment process, before any events

have occurred; this makes the fault speci�cation part of the initial condition

speci�cation. For example, if we wished to model a disabling of the left-side

primary bus on powerup, we could set:

onside_primary_deaf[0] = true;

onside_primary_deaf[1] = true;

xside_deaf[2] = true;

xside_deaf[3] = true;

We might also wish to model a fault that occurs as soon as a certain condition

becomes true (e.g. a certain amount of time has elapsed). To do this, we check the

condition after every tick or message event processed, and call a fault injection

routine when it becomes true.

if

::!fault_injected ->

if

::condition ->

inject_fault();

fault_injected = true;

::else -> skip;

fi;

::else -> skip;

fi;

Furthermore, we might like to model a fault that is injected at a random time;

for instance, we might want to model a bus that could malfunction at any time.

This can be done as follows:

if

::!fault_injected ->

if

::condition ->

inject_fault();

fault_injected = true;

::true -> skip;

fi;

::else -> skip;

fi;

In these examples, a fault event is something that can occur only once in any

execution sequence of the model. However, we might also like to model faults

that occur multiple times; a bus, for example, might switch from functional to

nonfunctional many times during execution. We can do that by getting rid of the



\fault injected" variable above and modifying the inject fault() function so that

it \uninjects" a fault already injected. For example, an inject fault() function

designed to make the onside primary bus malfunction might do this:

if

::onside_primary_deaf[0] ->

onside_primary_deaf[0] = false;

onside_primary_deaf[1] = false;

xside_deaf[2] = false;

xside_deaf[3] = false;

::else ->

onside_primary_deaf[0] = true;

onside_primary_deaf[1] = true;

xside_deaf[2] = true;

xside_deaf[3] = true;

fi;

Note, however, that nondeterministically choosing to execute such a fault

function will greatly increase the state space size, much more than if the fault

can only occur once. We found that introducing a fault condition that could

\
ip" arbitrarily many times, as in the above example, made the state space too

large to be tractable for exhaustive veri�cation.

3.8 Adding sync phase behavior to the model

With the addition of multiple buses and bus faults, our model now incorporated

most of the features of the algorithm relevant to the initial achievement of syn-

chronization. However, most of the complex logic in the ASCB-D synchronization

algorithm, especially logic for detecting and responding to faults, is speci�c to

NICs in the \already synchronized" state. In principle, adding this logic to the

model should be a relatively simple matter of extending the NIC processes to

do more complex calculations on messages received when in sync; after all, the

environment process cares only about frame ticks and message transmissions,

and not about whether NICs are in sync.

However, our initial experiments quickly showed that the existing environ-

ment process, combined with sync phase code, produced intractably large mod-

els. The culprit here was clearly the nondeterministic choice between events that

were scheduled to happen at the same time. The de�ning characteristic of sync

phase is that all NICs in sync should have their frame ticks occur at the same

time. Furthermore, corresponding pairs of NICs (one on each side) transmit

timing messages at the same time when in sync; for example, NIC 1 and NIC 3

transmit at the same time. Thus a four-NIC model in normal operation with all

NICs synced must explore 96 orderings of the NICs' frame ticks and subsequent

sync message transmissions{ for every frame.

In order to make the model tractable again, we had to impose a deterministic

priority ordering on events scheduled at the same time. Intuitively, we ought to



be able to impose such an ordering and then replicate the execution orderings

lost by changing initial conditions. For example, if two timing messages from two

di�erent NICs, say A and B, are scheduled at the same time with a certain set

of startup times for each NIC, they might come in either order. If we impose an

order, say A comes before B, then we can replicate the \lost" execution sequence

where B comes before A by making B's startup time slightly earlier, so that the

time at which B is scheduled to transmit is strictly earlier than the time A is

scheduled to transmit. This works as long as the time increment by which we

change B's time is small enough that it will not a�ect any other event in the

system. In e�ect, we are splitting the old state space into two subspaces, each of

which can be covered by a (hopefully) more tractable veri�cation.

We want to formally justify the imposition of an order rule in which:

{ when a frame tick and a message transmission are scheduled at the same

time, the frame tick comes �rst.
{ when two message transmissions are scheduled at the same time, either could

come �rst.

Our argument can be stated as follows: Suppose there are two events, EA
and EB , which emanate from NICs A and B respectively, and which in a certain

system state S are scheduled at the same time. If such events are nondetermin-

istically ordered, we could have EA or EB execute �rst, leading to consequent

states C1 and C2. Given an order rule for such events satisfying the above prop-

erties, we want to show that there exist states SA and SB using that order rule,

such that the consequent states of SA and SB , CA and CB , are equivalent to S1
and S2 respectively. Here \equivalent" is de�ned as \di�ering only in the values

of time counter variables." If this is true, then we've proven that any execution

ordering in the nondeterministic model is also in the deterministic model.

We proceed by cases.

1. EA and EB are both tick events.
Then C1 = C2, so we can take SA = SB = S. This is true because NIC A's

processing of its frame tick cannot in itself a�ect NIC B in any way, and vice

versa; furthermore, their resultant timing message transmissions (if any) will

be scheduled at just the same times regardless of the order they execute in.

Therefore the ordering of EA and EB cannot a�ect future events.
2. EA is a tick event and EB is a message transmission, and A = B.

Then we make the assumption that a NIC's message delay time (the time

between the occurrence of the frame tick and the transmission of the timing

message resulting from that frame tick) is always either:

{ strictly less than the length of its next frame
{ in�nity (i.e. the NIC transmits no message from that frame tick)

This assumption is true for all versions of our model. It implies that if EA is

scheduled at the same time asEB , then EB must be the message transmission

resulting from EA. If this is the case, then EA must execute before EB , since

EB does not exist until EA executes. So, whatever order rule we choose,

there is only one ordering of these two events.



3. EA is a tick event and EB is a message transmission, and A 6= B; or EA and

EB are both message transmissions.
For the �rst of these, under our deterministic order rule, we can take SA = S

since EA is a tick event and so must execute �rst. For the second, we can

again assume that our order rule puts EA before EB , so SA = S. In both

of these cases, we want to construct SB by setting an initial state for the

system that is the same as the initial state resulting in S, except that the

startup time for A is one time unit later.
If A or B is in sync, then there are only two ways EA and EB can occur at

the same time:

(a) They are message transmissions from two NICs on di�erent sides. In this

case, their order is unimportant, since they go into di�erent bu�ers for

each NIC. We therefore can take SB = S if this happens.
(b) One of A and B is not in sync with the other. If this is true, we can

move the startup time for B back one unit so that EB occurs before EA.

This works as long as all of the other events before EB and EA are not

a�ected by this shift.

In this case, then, we must ensure that the time granularity is su�ciently

small that we can moveB's events by one unit without a�ecting the orderings

of those events with respect to others. Once again, the ordering of two ticks

is irrelevant, and we can without loss of generality assume that B is out of

sync with respect to at least one other NIC. Then it is su�cient to make

the time granularity no greater than Dmin=(n � Fmax), where Dmin is the

shortest nonzero message transmission delay for a non-synced NIC, n is the

number of timing NICs, and Fmax is the maximum number of frames that

a NIC can take to get in sync.
As it happens, for our model, Dmin = 500 �sec, n = 4, and Fmax � 20.

This gives a maximum time granularity of 6.25 �sec, so the 1 �sec time

granularity used in the �nal version of our model is su�cient.

3.9 Including fault response logic

Once we have a tractable model of normal sync operation, we can then model

the rules by which NICs detect and respond to bus faults. These situations

can be tested in the model by the introduction of appropriate bus faults. For

instance, if the left-side primary bus malfunctions after the NICs have achieved

sync with a left-side NIC as reference point, the right-side NICs will no longer

have a reference point for maintaining synchronization. Eventually one of them

will assume the status of a new reference point, and the left-side NICs will have

to resynchronize to it.

In the presence of such resynchronization, verifying the timing invariant be-

comes more complicated. Now it is clearly not enough to look at the �rst 200 +

� msec of operation. Besides verifying that we initially get into sync within 200

msec, we want to verify that when sync is broken by some fault, resynchroniza-

tion is achieved within some bounded time. We need two modi�cations to our

time-measurement mechanisms in order to make this work:



1. We introduce, in place of a counter for total elapsed time, a counter variable

\total time since resync" that measures the total time since the last resyn-

chronization began. This counter variable is set to 0 at startup, incremented

just as the elapsed time variable was before, but reset to 0 upon the oc-

currence of a resync (i.e. all NICs are in sync, then one NIC drops out of

sync).

2. We now cannot cut o� the state space when total time since resync passes a

certain threshold; there is no obvious bound on how long the system might

stay in sync and keep generating new and \interesting" execution order-

ings. Therefore, when total time since resync exceeds its threshold, instead

of jumping to an end state, we set total time since resync back to the thresh-

old value. This prevents it from increasing to in�nity, and bounds the state

space by causing SPIN to treat two states as the same if they di�er only in

the amount of time elapsed since resynchronization.

We found that the \in-sync" model remains tractable, given appropriate

restrictions. For instance, a veri�cation run for our timing invariant, with a �xed

set of startup timings, plus a randomly occurring bus fault, �nishes in about �ve

minutes after exploring 2.65 million states, reaching a search depth of 42724.

If a totally deterministic startup ordering (all NICs start at the same time) is

used, and there is no bus fault, the veri�cation completes in less than a minute,

storing 65032 states and reaching a depth of 9472.

Note that this veri�cation run proves less than the same run would have for

a version of the model with nondeterministic event ordering. However, this can

be remedied by making several veri�cation runs with di�erent sets of startup

timings. The important point is that we have kept the model tractable while

greatly increasing its complexity, decreasing the time granularity, etc.

3.10 Expanding the model

As a �nal test of our model's scalability, we expanded it to include six rather

than four NICs. The changes required to the environment process were relatively

simple: We added two new events to the event list for the frame ticks of the two

new NICs, expanded the appropriate arrays (message bu�ers, times remaining

until the next tick, etc.) to account for the new processes, and expanded the

message transmission code to transmit messages to the new NICs.

When we ran an exhaustive veri�cation with six NICs, for a �xed startup

ordering and no faults, the run again completed in less than a minute, storing

92951 states and reaching a depth of 13754. This was much less of an increase

in state space size than we had feared; it served to con�rm the e�ectiveness of

our environment process design, which prohibits interleavings between the user

NIC code and the other processes' code. Adding a random bus fault increased

the time required to about nine minutes, the state space to 2.65 million states

and the search depth to 59050.

However, adding a nondeterministic choice of startup order, with no faults,

resulted in the veri�cation using 2 million states, reaching a depth of 14805



and taking 5 minutes to complete. With a randomly occurring bus fault and

nondeterministic startup order, the model becomes intractable for exhaustive

veri�cation; bitstate veri�cation shows an approximate size of 16 million states.

The reason for this is easy to see: whereas with four NICs there were 24 possible

startup orderings for any �xed set of startup times, with six NICs there are 720.

A six-NIC model, then, is pushing the limits of veri�ability with our current

computing resources. (The actual system in which the algorithm is used can

contain up to 32 NICs, but the NICs are organized into categories such that six

are su�cient to represent all possible interactions).

Fortunately, the model's usefulness does not lie only in its capacity for veri-

fying system properties. Our current model, which integrates a large majority of

the speci�ed algorithm's features, is a very powerful tool for asking \What if?"

questions that are di�cult to answer either by manual analysis or by testing on

real hardware. If you want to see what happens to the model when, say, the NICs

start out at intervals of 0.2 msec, and the right-side primary bus fails 40 msec

after the �rst NIC begins, all you need to do is program in (mostly with #de�ne

statements) the appropriate startup timings and fault injection conditions, and

run a simulation. The resultant graphical display, although it can be hard to

read at �rst, gives a clear and comprehensive picture of what's happening in the

system at any point in time.

4 Lessons learned

4.1 E�cacy of the top-down modeling approach

We believe that the success of our modeling e�ort{ our construction of a working,

useful, well-understood model of a complex algorithm{ demonstrates the e�cacy

of what we might call a \top-down" modeling process. The crucial characteristic

of such a process is that it starts by modeling as small a subset of the system

as possible at the highest possible level of abstraction, and builds on that small

model in stages, gradually decreasing the level of abstraction and increasing the

number of features included. This approach may seem to involve a lot of extra

work, but in fact it reduces the model construction time required signi�cantly;

most of our model was built by one person with about 1.5 man-months of e�ort.

There are several reasons why the top-down approach works well. It avoids

the conceptual di�culty of trying to comprehend and model a lot of unfamiliar

things at the same time; the modelers' understanding of the system is built up

in stages as the model itself is built. Because the top-down approach starts with

a highly abstracted model and decreases the level of abstraction as time goes on,

it facilitates high-level thinking and prevents too much focus on the trees at the

expense of the forest. The approach drives the model structure naturally toward

modularity and clear separation of functions, leading to an easier-to-understand

model. Furthermore, even partial models can provide important insights into a

complex speci�cation, and can form the basis for thinking about features of the

system that are not yet modeled.



4.2 Modeling time-dependent systems

The ASCB-D modeling e�ort also taught us quite a bit about modeling sys-

tems whose central properties are based on time. Modeling these systems with

a purely order-based model introduces large numbers of execution interleavings

which do not exist in the real system and which produce spurious violations of

safety properties. Furthermore, performance requirements for these algorithms

are often expressed in terms of time, so you need a numerical time model to

verify them.

Modeling time with an event queue seems to be a feasible, conceptually

simple method for event-driven algorithms. However, it requires that careful

thought be given to nondeterminism in simultaneously scheduled events. Some

restrictions on nondeterminism may have to be justi�ed by algorithm-speci�c

system properties, as we justi�ed the restrictions on event ordering.

4.3 Controlling model state space size

Finally, our experience taught us that controlling nondeterminism and interleav-

ings of concurrent processes is the overriding factor in managing the state space

of a model{ far more important than limiting the number or size of variables

used, reducing the total number of processes in the model, etc. It is useful to

assign a single process to be the manager of interleavings, so that other processes

can model the desired algorithms in a way that is close to how they would be

implemented in the real system. The construction of this process is likely to be

less susceptible to automation than the modeling of the algorithm itself, since

the structure of this \environment" depends on domain-speci�c properties of the

hardware events that drive the algorithm.

One of the most e�ective tactics for controlling nondeterminism is using �xed

initial condition settings to split the state space of all possible system conditions

into numerous subspaces. When attempting to verify an invariant with such a

model, it is always necessary to qualify the veri�cation result by noting the set

of initial conditions over which the veri�cation was performed. Complex, time-

dependent systems are likely to have a space of initial conditions large enough

that the system cannot be veri�ed over the whole space in a single run; therefore

small subsets of the initial condition space must be chosen intelligently as sub-

jects for veri�cation. The formulation of a small set of initial conditions that are

in some sense representative of all the possible ones is a di�cult and domain-

speci�c problem, which we have yet to address for the ASCB-D synchronization

algorithm.

References

1. G. Holzmann. The SPIN Model Checker. IEEE Transactions on Software Engi-

neering, vol. 23, no. 5, May 1997, pp. 279-295.

2. S. Yovine. \Kronos: A veri�cation tool for real-time systems." In International

Journal of Software Tools for Technology Transfer, vol. 1, no. 1/2, Oct. 1997.



3. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Veri�cation of time

partitioning in the deos scheduler kernel. In Proceedings of the 22nd International

Conference on Software Engineering. ACM Press, June 2000.

4. A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli,

and P. Traverso. Model Checking Safety Critical Software with

SPIN: an Application to a Railway Interlocking System. Presented at

SPIN97, the Third SPIN Workshop, April 1997 (online proceedings at

http://netlib.bell-labs.com/netlib/spin/ws97/papers.html).

5. K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space

Craft Controller using SPIN. Presented at SPIN98, the 4th Inter-

national SPIN Workshop, November 1998 (online proceedings at

http://netlib.bell-labs.com/netlib/spin/ws98/program.html).

6. S. Vestal. Modeling and veri�cation of real-time software using ex-

tended linear hybrid automata. To appear at Lfm2000, June 2000 (see

http://atb-www.larc.nasa.gov/fm/Lfm2000/).


